Lesson 18. Testing Subsets of Predictors - Part 1

1 Overview

- We want to test a subset of predictors simultaneously
- Consider the model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \varepsilon \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

To test	Hypotheses	Use	
single β_i			
whole model			
subset			

2 The nested *F*-test

- Formal steps:
 - 1. State the hypotheses:

 $H_0: \beta_i = 0$ for all predictors in the subset

 $H_A: \beta_i \neq 0$ for at least one predictor in the subset

2. Calculate the test statistic:

- \circ The **full model** is the model with all k predictors
- The **reduced model** is the model without the predictors being tested
- o The SSE terms can be found in the ANOVA tables (see Lesson 14)

- 3. Calculate the *p*-value:
 - o If the conditions for multiple linear regression hold, then the sampling distribution of the test statistic



degrees of freedom

4. State your conclusion, based on the given significance level α :

If we reject H_0 (p-value $\leq \alpha$):

We see significant evidence that including subset of predictors improves the model.

If we fail to reject H_0 (*p*-value > α):

We do not see significant evidence that including subset of predictors improves the model.